
UNLIMITED

RSRE
MEMORANDUM No. 4279

ROYAL SIGNALS & RADAR
ESTABLISHMENT

SIMOGEN - AN OBJECT-ORIENTED LANGUAGE
FOR SIMULATION

Author: C A Arthur

PROCUREMENT EXECUTIVE,
6 MINISTRY OF DEFENCE,

*R S RE MALVERN,

WORCS.

z
cc

0

cc

UNIMTE

CONDITIONS OF RELEASE

0046043 OR-I 10829

... a..aam.. ma. a. aa.a msU

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

.......................... y

Repots quoted are not necessarily available to members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMT

Memorandum 4279

TITLE: SIMGEN - An Object-Oriented Language for Simulation

AUTHOR: C A AP=

DATE: MARCH 1989

SUMMARY

The Simogen language has been designed specifically to provide a user-
friendly ervironment for computer modellers. It is a heavily object-oriented
language, but has been designed to be easy to pick up for the most
inexperienced of users, rather than to exploit the full power of the object-
oriented paradigm in all cases. This paper looks at the reasons why it was
felt necessary to create a new language, and considers the reasons behind
the particular design chosen. It also describes the language in outline, and
discusses briefly to what extent the language can be said to be object-
oriented. Finally, an outline is given of a possible iconic interface for
the language, to ease it's use still further.

The support and guidance of Professor R L Grinsdale (Sussex University),
during the work described here, is acknowledged.

KEYORDS Proramming Languages Object-oriented Simulation C Smalltalk
Portability Modularity Encapsulation User Interface Icons Windows

This memorandum is for advance infonation. It is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry
of Defence

Copyright
C

Controller HMSO London
1989

THIS PAGE IS LEFT BLANK(INTENTIONALLY

.ONTENTS

1. INTRODUCTION

2. THE SD40GEN LANGUAGE

2.1 Why a new language?

2.2 Factors influencing the design of the language

2.2.1 The Target User

2.2.2 Portability

2.3 An outline of the Simoge-n language philosophy

2.4 Solving the portability problem

2.5 A look at the syntax of Simogen

2.5.1 Functions

2.5.2 An Example

2.5.3 Timing in Simogen

2.6 How object-oriented is Simogen?

3. IDEAS FOR AN ICONIC USER INTERFACE

3.1 Some possible features of the interface

4. CONCLUSION

5. BIBLIOAPHY

6. DISTRIBUTION 1

I 7 .. .

* I- i

DI'-t
S.

• -=.-=....----,=- -.. = =m -,mI~m I ,=" I I

THIS PAGE IS LEFT BLANK INTENTIONALLY

1. INTRODUTCTIO

The Simogen language has been developed within the Battlefield Systems group
at the Royal Signals and Radar Establishment, Malver.. It was designed to
provide a programming language for users of the Battlefield Sensor Simulator
machine, or BSS. The language aims to provide a framework which the user can
rap his problem onto quickly and easily. A survey of the field, and of the
progiaming paradigms available, indicated that object-oriented techniques
were very well matched to this type of task. Thus a language has ee-n
designed and a prototype program generator implemented, which hopes to
provide a balance of the power of a full blown object-oriented language,
such as Smalltalk, and the simplicity of a teaching language like Pascal.

Despite being written for a very particular purpose the Simogen language is
not in any way tied to a particular class of problem, and could be used for
a whole range of progranutming applications. The program generator has been
developed in a machine independent way, to run on most machines which have a
C compiler.

I

2. ThE SfX LAGUAGE

2.1 Why a new language?

For the last few years RSRE has been engaged in the development of the
Battlefield Sensor Simulator (BSS). This is a large computer system which
aims to completely change the process of modelling sensor devices on
computers.

Historically, the first stage in testing a new sensor design has been to
build a physical prototype. If testing this prototype exposes a flaw in the
sensor design there will be a need to revise the design, and then a further
prototype mist be built and tested; this cycle must be repeated until the
design is found to be satisfactory. This process is very costly, both in
terms of the time taken to go round each iteration of the loop, and in terms
of the money spent on materials and labour each time in building a
prototype. Thus there is an urgent need for computer simulation of such
devices, so that many of the flaws in the design can be ironed out before
the first real model is built, decreasing the number of re-designs needed at
this stage and lowering the cost.

For these reasons the simulation of sensors has been widely carried out for
many years. The new element provided by the BSS is a drawing together of the
kinds of facilities that modellers need. In general, each new sensor model
is written from scratch, and the model itself becomes inextricably linked
with the envirornental information which that particular sensor requires in
operation. Therefore in general it would be very difficult for a modeller to
take an existing model for a short range radar, written by someone else, and
to adapt it for his requirement of modelling a long range bistatic radar.
Models are also written in a wide range of languages, and often cannot
easily be ported from one computer to another.

The BSS aims to alleviate these problems by providing a comnon set of
facilities to ease the process of writing models. In brief, currently the
BSS is driven by a detailed scenario of 48 hours duration, givirrr the
movements of vehicles over a large area. The BSS also provides a database of
a range of information about the terrain within this area. Lastly, there are
facilities to carry out intervisibility calculations for the user. A full
description of the BSS is given in [i].

The BSS is unusual, in that the user carries out all his modelling on his
own workstation (in this case a workstation may be quite a large machine,
such as a Vax 11/780), and simply asks the BSS questions to obtain the data
he needs. This means that the performance of the whole system is not
severely dow-graded if one user runs a model which requires a great deal of
processing power.

In addition to the facilities described the BSS system provides Simogen, a
special programming language for writing the sensor models. The language is
designed to keep the balance between providing all the constructs needed by
modellers, and being simple enough to be picked up quickly and easily.
Beyond this Simogen provides not only the means of writing individual
models, but also the necessary tools to join them together into networks of
arbitrary complexity.

Library models written in Simogen, will be provided for users of the BSS
system. These will consist of generic models of common sensors which can be

II IR 1 III liI

tuned to represent the behaviour of the users' actual sensor simply by
providing a set of parameters.

2.2 Factors influencing the design of the language

2.2.1 The Target User

The Simogen language was designed to aid a specific group of people. They
are a mix of engineers, operational analysts, and people from other
disciplines with the common goal of modelling sone device or group of
devices in order to find the answers to their questions. In particular, the
people using the BSS would normally not be trained programmers or
experienced modellers. Another common factor among the users is likely to be
that of having only a few weeks to learn to use the BSS, carry out their
simulation, and produce the results.

These points meant that the language needed to be very simple in its basic
structure, yet at the same time provide a useful framework and structure to
help the user organise his thinking. It was also thought useful that the
language should resemble existing languages where possible, for example by
using constructs which are similar syntactically to those of Pascal or C.

Further analysis showed that there were a set of highly desirable properties
for such a language:-

a/ That it should allow the decomposition of real-world mechanical
structures into a set of "black boxes" which communicate strictly defined
ways. This property is important because engineers tend to decompose real
systems in this way.

b/ That the 'black boxes' can be further broken down in the same way to any
riwrber of lavels, to rpl-ect thp way a real item of equipment can be seen at
several levels of complexity.

c/ That the boxes can operate autonomously (so there is no single thread of
control running through the program), and that they appear to run
concurrently. This is an important feature because it allows a model to
accurately retlect the ordering of events in the real equipment.

d/ That the user can create a black box with the properties he desires, and
then replicate this as many times as he wishes. For example, to model a
communications network he might define the black box for one node in the
network, then create a running program with 20 copies of this. In many
conventional languages this would not be so easily achieved, and the user
would be drawn into making a decision on how to map the network onto the
constructs provided.

These requirements indicated that many of the properties of object-
oriented languages would be very appropriate for this type of modelling. A
number of object-oriented languages were considered for the task (for
example C++ and Smalltalk) and did indeed have very useful properties. Their
chief drawback was that they required considerable initial effort in
understanding the concepts and learning to use them For the particular

application involved this learning tine was simply not available, and a
simpler alLernative was needed.

2.2.2 Portability

As mentioned above, the Battlefield Sensor Simulator system requires that
the user provides his own computer to run his model on. For this reason a
wide range of machines are likely to be used, and for the language
recommended for use on the BSS to become a useful tool and provide libraries
of sensor models for users, it must be portable to all these machines. This
factor further limited the choice of modelling language, since many
languages considered were simply not available on a wide enough range of
machines (for example, the Smalltalk language was not available on the
Hewlett Packard machines which currently make up the majority of
workstations).

Languages such as Modula2 [3] [5], and Ada[6] were also considered. These are
not strictly, fully object-oriented in every way, but have many useful
features in comon (for example, modularity). The issue of portability again
caused problems here, since neither of these languages were available on the
broad spectrum of machines needed.

. i = i i

2.3 An Outline of the Siraen Language Philosophy

Since no xisting language met both the requirements for ease of use and
portab'i .y, it was decided to develop a new language to meet these.
There'--re, the Simogen language (SImulation MOdel GENeJrator), draws heavily
or the object-oriented paradigm, but attempts to avoid complexity and
difficult concepts wherever possible.

A program in Sirogen consists of any number of objects. The object consists
of data space, and code which tells the object how to behave. As in the
majority of object-oriented languages, objects communicate by passing
messages to one another; a message consists of an identifying name, and any
number of arguments (but the nL.-iber and types of these arguments is fully
defined when the progran is written). In Sfrogen, an object reacts to a
message sent to it, by executing its response fcr that message.

A Sinogen object is like the black boxes described earlier; its internal
variables, and the way in which it works are not visible to the outside
world, and the only way to communicate with it is by sending a message to
it. For each message sent to an object, the user will understand the effect
of this, but will not need to know exactly how it is achieved. This means
that an object can be fully specified to other objects by stating

- ..tat global variables it declares
- w.tat types are defined in the globals section

(this is only needed by objects which are defined within this object)
- tat messages it is able to receive
- at messages it may send, and to which objects

This property of encapsu2 ation of data and the code to act upon it, is very
i-qn--rtant to this application, since the usefulness of the set of library
sensors provided for users will depend heavily on the ease with which they
can be interfaced with other models, and configured to meet the users needs.
The fact that objects coninicate only through predefined messages, and have
no way to alter one another's data, means that the danger of unexpected side
effects when using several different models is greatly reduced.

When an object sends a message in Simogen, it does not wait for the response
for that message to corplete, but continues to execute independently. Thus a
model in Simogen consists of a set of objects which appear to operate in
parallel (this is not actually the case but the Simogen scheduler shares the
time among them so that it appears to be so). This feature is very valuable
in a language for simulating the real world, because many real world systems
carry out several activities at one time. Here Simogen deviates from the
standard object-oriented paradigr, since there is normally a single thread
of control in object-oriented prcgrams (although other work has been done on
combining parallelism with object-oriented ideas [4]).

Simogen's pseudo-parallelisn also allows several different activities to be
in progress within a single object at any time. This means that the
programmer must take care to ensure that a particular order of execution is
enforced where necessary; although this may seem to be a problem, it mimics
the problems inherent in the real world. Thus, if a model is written to
represent closely the behaviour of a real world system, the points where
care is needed on the part of the programmer are likely to indicate possible
difficulties in the rea] system.

In Simogen, the code which describes an object is termed its definition.
Once an object has been defined, Simiogen allows the user to declare as many
-pies (or instances) of it as he wishes; each of these will have its own
data space and operate completely independently of the others. Each instance
of a Simogen object must be activated before it can receive or send any
messages, and my be terminated when it is no longer required.

The ability of one object to declare instances of another, like any other
data type, means that in Sinogen objects can be nested. This allows the
model to be decomposed in the same way as the engineer views the real
system. For example, a radar could be modelled as a radar object, which
contains 4 other objects as shown -

Radar Obj ect

Signal Generator Controller
Subobj ect Subobj ect

Scanner Operator
Subobject Interface

Subobj ect

-the Signal Generator object would be responsible for generating a
representation of the signal that this type of radar would receive, given
information on the envirorment around it. It would then pass it on to the
Operator Interface for displaying.

-the Scanner would represent the scanning motion of the radar. Using
information on the arc of coverage of the radar ad its scanning speed, this
could calculate at any point in time the orientation of the radar.

-the Operator Interface would provide the users view of the simulation,
creating a screen like that of the radar being simulated. To do this it
would take the returned signal calculated by the Signal Generator and
translate this to a screen image (trace). It would also accept user commands
to change parameters of the radar (for example the scan rate or scan
pattern).

-the Controller object would provide the coordination between the other
objects, converting the users requests fr-om the Operator Interface to
messages for the other subsystems.

Through this kind of approach, the object concept can be mapped cleanly onto
the sub-systems of the equipment being simulated.

The ability to nest objects is not present in many other object-oriented
languages, but provides a very useful structure for the decomposition of
machinery. It can me seen as analogous to the top down functional

decomposition approach in procedural languages, which provides the user with
a powerful method of breaking down large problems into procedures and
functions in a controlled way. In Simogen problems can be broken down in
terms of objects, which not only reflect the activity required, but can also
encapsulate the data representing the current state of this part of the
system (in a procedural language any persistent data would usually have to
be stored outside a given procedure and passed to it as a parameter).

2.4 Solving the Portability Problem

The method chosen to provide the necessary portability was to convert the
user's program in Simogen to a widely available progranming language, and
then allow the compiler for this language on the user's machine, to compile
it down to machine code. Clearly the Simogen program generator must also be
written in the same prcgramming languaje.

In this case, the C language was chosen, for the following main reasons -

- The C language is very widespread. This means that many new users will
already has a C compiler on the machine which they intend to use for
modelling. Alternatively, they will be able to obtain one quite cheaply and
easily.

- It is comparatively standard over a wide range of machines. Preliminary
tests have shown that arbitrarily large and complex programs can be ported
between a range of machines with few or no changes. The newly formed ANSI
standard for the C language should help further in this area.

- C is a fairly simple but flexible base language. It has a comprehensive
library of string handling routines, common to most implementations; this is
most useful for the large amounts of text processing required in a program
generator (much of the C code output is formed directly by copying and
manipulating the input text). Its simplicity and comparative lack of
structure also makes it easy to create the program generator output in C,
translating from the Simogen language with its strong modularity and special
scoping rules. To attemrpt to map the scoping of Simogen onto a language
which had its own strong rules in this area, might be considerably more
awkwar 1.

. The simplicity of C tends to lead to efficient compilers for it, allowing
che two stage translation from Simogen to machine code still to be
-I, omplished reasonably quickly.

The internal coding of each section within an object is procedural and quite
conventional in nature. It was felt that, whilst the object paradigm provide
a very natural of decomposing the mechanical world, people generally seem to
describe each activity which a piece of equipment can carry out as a
sequential list of instructions. Procedural code provides the closest
mapping to this way of describing things.

2.5 A look at the syntax of Simogen

An object in Simogen is divided into a number of sections, as follows:-

object OBJ NAME is

globals

locals

initialise

responses

demons

definitions

endobject OBJNAME

All of the sections are optional. Taking the sections in order:-

- the globals section holds those variables which are to be seen by other
objects outside, but which cannot be altered by them. The globals area
might, for example, be used to store the position in grid coordinates of a
sensor device being modelled, so that othsr devices (modelled as objects)
could take into account its effects.

- the locals section contains the declaration of variables which are to be
visible throughout the object, but invisible outside it.

- the initialise section contains program code, which will be run when the
object is activated. This piece of code may terminate, or may contain a loop
which keeps running for all or part of the objects life (this allows the
modelling of a continuing background activity in an object).

- the r section tells the object how it must res-pond when it
receives specific messages. Each response follows the form -

on message [MESSAGENAME, int n, char c,...]
do

Thus, the range of messages which a given object can receive is defined at
compile time, and the user can be informed at this point of any unrecognised
messages.

- the demons section. A demon is a piece of code which can be set to execute

whenever a particular event occurs. It takes the form :-

on activation of OBJECTNAME

do

or
on termination of OBJECT NAME
do

or
on change in VARIABLE-NAME
do

A demon can be set on any variable in the object where it appears, and can
be triggered on the activation of a subobject, the termination of a
subobject, or on a change in the value of a variable. Demons can also be set
on the global variables in other objects; this could be useful, for example,
in monitoring the movements of some object. Demons could also be useful in
developing an object which watches the changes occurring in another object
when debugging a program, printing out useful information for the user. Once
the program is operating correctly, the debugging object can simply be left
out without any other change to the code, to get rid of the debugging
information.

- the definitions section contains the definitions of any sub-objects and of
functions. The sub-objects follow exactly the same format as their
surrounding object; the purpose of placing the subobject definitions inside
this object, will be to indicate that it will only be used here (these
definitions will be out of scope outside this object).

2.5.1 Functions

Functions, in Simogen, can be defined in the definitions sections of
objects, or at the outermost level of a program. They are not the main means
of program decomposition as in Pascal or Modula, but are provided to allow
routines used frequently within an object to be written once as a function,
and also to allow access to existing C language libraries of functions for
mathematics, string handling etc.

,.-- -. ==-a.=-=. n n no. nn n

2.5.2 An Exarple

To conclude the section on Simogen syntax, an exarple is given below of a
very simple program in Simogen

startobject CONTROL controller;

object GIVE object TAKE is

initialise responses
loop on message [ITEM]

begin do
send [ITEM] to creator.taker; printf("Thanks\n");

end
endobject TAKE

endobj eat GIVE

object CONTROL is
locals

obj G1VE giver;
obj TAKE taker;

initialise
activate taker;
activate giver;

endobj eat CONTROL

It can be seen that the program is divided into 3 objects, defined as GIVE,
TAKE, and CONTROL.

GIVE repeatedly sends a message ITE, with no arguments, to TAKE.
TAKE consists only of one response, which receives the message ITEM and
prints "Thanks" to the screen.

The O'NTROL object serves only to coordinate the other two. It declares an
instance of each of GIVE and TAKE, called giver and taker respectively, and
activates them. The line at the top of the program beginning
"startobject.." tells Simogen which object is to be activated initially. It
is then the responsibility of this object to cause the activation of any
other obj ects.

Lastly, the GIVE object sends its message to "creator.taker"; creator is a
predefined object identity for all objects, and refers to the object which
declared and activated this object. Thus, to refer to taker from giver it is
necessary to go via creator; the dot operator folloing a object name allows
names within the objects scope to be referenced (this is the means by which
the global variables of another object are referred to).

2.5.3 Tine in Simogen

In modelling the real world it is often important to be able to dictate the
order in which events occur. When using the Battlefield Sensor Simulator it
is also necessary for the user to be able to synchronise his model with the
passage of time on the BSS. Simogen provides two measures of time, realtime
and scenariotime, the first represents time on the the users system, and the
second the passage of time in seconds through the BSS scenario.

Timing can be controlled by means of

a/ The delay statement, which causes execution of the particular piece of
code to be held up for a given time

b/ Appending timing information to the sending of a message, for example

send [I to creator. taker after 3 minutes, 4 seconds realtime;
or

send [IT[4] to creator.taker at 10:20:30 scenariotime;

2.6 Ho," object-oriented is Simcgen?

The following table compares some of the rain features of Simogen with
Sn-alltalk.

Smalltalk Simogen

Sees the world as objects yes yes

Communication by predefined messages yes (methods)lyes (responses)

Many instances of an object once defined yes (classes) yes

Inheritance yes no

Dynamic creation yes no

To summarise, Simogen has many of the features of an object-oriented
language, but omits certain key properties (notably inheritance). It has a
distinctly object-oriented flavour to it, and insofar as Ada has been
considered to be object-oriented, Simogen quite definitely is. However, it
does not pursue all the possible object-oriented properties to their limit
as in a language such as Smalltalk.

3. IDEAS FOR AN ICNIC USER fIN FAC

Early in the history of computing all programs had to be written in machine
code. This meant that the programmer needed to know in detail about the
architecture of the machine he was using (for example the number of
registers provided, their size, and any differences in their function).
Computer languages have evolved, through assembly language to Fortran, and
then on to Pascal-like languages. At each step the gap between the user's
perception of the problem to be solved, and the way in which he must express
it for the machine, has narrowed. The Simogen language closes this gap still
further for those who model complex machinery, by providing a way of
structuring programs which closely reflects their view of the problem. The
iconic interface will try to provide yet another level of abstraction which
allows models to be put together or tuned and run, without any understanding
of the code at all.

The next section describes a possible iconic interface for Simogen.

3.1 Some possible features for the interface

Working with the iconic interface the user will be presented with a set of
symbols, each of which represents one of the sensors models available to
him (for example, one might be a small picture of a radar, another a thermal
imager). The user can select an icon by moving the cursor onto it (using one
of number of input devices, for example a mouse or special keys on the
keyboard), and can then move it to group it with others. This allows him to
collect together all the different sensor models which he wishes to use in
his simulation. He can also display a map of part of the BSS area, and can
position the icons on the map to set up their positions (this makes it easy
to select a location for a sensor quickly and visually (the user can simply
locate a high point by the contour lines on the map, and move the sensor to
it)).

The user's simulation program can then be created interactively. After
collecting the icons which he wishes to use, he must configure the models to
suit his needs (default values will be provided for all sensors, so that
first attempts at a model can be constructed without this step). For each
different icon the user will be able to call up a menu which will allow him
to select from a list of the operations allowed on that model. This might
include :-

View details
- this option might lead to a screen providing basic information

on the object, such as
its position,
its state (probably one of not yet activated,

active,
finished (possible only when an

object cannot respond to
any messages)

or terminated).

View spec
- Look at the specification of the object in terms of the messages

which it sends, those which it receives, the global variables it
has, and what objects it assumes the presence of (ie which
objects it sends messages to, or refers to the global variables
of)

View settings
* - This could allow the user to look at the settings of variables

which configure the particular sensor being used, and alter
these if required. The aim of this is to provide a means of
tuning existing sensors for a particular simulation without the
user needing to read and understand the code for them. The
variables included here might be those in the object's globals
section. An example of this might be the case where the user
wishes to set up a wired communication network. Each node in the
network might have the settings

MyId - a unique string which can be used to
identify this node

Rx rate
Tx rate - the rates (probably in baud units), at which

the node will receive data and transmit it
Fail Rate - a measure of the likelihood of the node

failing

The user could move through this list changing values to his
particular desired settings.

Open
look at and if necessary, edit, the code of the object in the
BSS language (for library models it will normally be possible
for the user to edit his local copy of the code, but not to
change the library version).

Activate
- start an object running.

Terminate
- Stop an object running (making it unable to receive further

messages.

The user will also be able to duplicate an icon as many times as he wishes
to create several separate models of the sensor in his simulation.

Finally, he will be able to connect up the individual sensor models, telling
each where it fits into the overall model, and which others it is to
cummunicate with (for example, in an exercise in data fusion, the sensor
models would all be told to send their reports to the same fusion object,
which would then attempt to correlate them). The user could then call up a
network diagram to show the links which he had set up.

The iconic interface will be developed under the X-windows system to allow
porting to any machine which supports this. It will hopefully provide a
means of building a simulation from existing models without the user needing
to deal with the program code at all.

.. -- - i i l l i l =, H0

4. CONCT-JSION

This paper has described the principles behind the proramnirg language
Simogen. The degree to which it is 'object-oriented' has been considered,
and the conclusion drawn that it has a strongly object-oriented flavour, but
is not so fully object-oriented as languages such as Smalltalk. Finally
ideas for an iconic interface to work on top of Simogen and allow models to
be created without the need for any programing knowledge at all, has been
described briefly.

A prototype compiler for Simogen has been inplemented (with one or two minor
oissions). It currently runs on Hewlett Packard 9040, and 350 machines,
but should be readily portable to many other machines.

.. . . . ,,,,,,,I,, , m, e ne m nulm m n m l

5. BIBLIOGRAPHY

1. The RSRE Battlefield Sensor Simulator
A J Middleton & M J Taylor.
Memorandum of the Integrated Battlefield Systems Division
No 26, June 1986,
(RESTRICrED).

2. Smalltalk-80
A Mevel & T Gueguen
Macmillan Coputer Science Series
ISBN 0-333-44514-7

3. What does Modula-2 need to fully support object-Oriented Programming?
J Bergin & S Greenfield
AC! SigPlan Notices, 23(3), March 88.

4. PRESTO: A System for Object-Oriented Parallel Programing
B N Bershad, E D Lazowska & H M Levy
Software Practice and Experience, Vol 18 No 8 (August 88)
pages 713..732.

5. Proramming in Modula-2
N Wirth
Springer-Verlag
ISBN 0-387-12206-0

6. Reference for the Ada Programming Language
U.S. Depare nt of Defence
ANSI/ML-STD 1815A.

7. Object-oriented Development
Grady Booch

Transactions on Software Engineering, February 86.

8. A Methodical Comparison of Ada and Modula-2
B Belkhouche, L Lawrence, and M Thadani
Journal of Pascal, Ada, and Modula-2, Vol 7, No 4.

9. Draft ANSI Standard for the C Language.

10. Ccuxruter Languages
Naomi S Baron
Pelican Books,
ISBN 0-14-022807-1.

DM UR[NT CON1TRO, SHEET

C~e-'l se:,r ty class fical om o+ sheet U.NCLASS:F:E.

(A la- as ccss'tie t1' sheel should contain only unclassified informalic - If it is necessary Ic e-'e,
classifed 'r'orea4,or. Dhe boi concerned lust be marked to indicate the clasSificaicr eq (P) (C' o (S'

1. DFJK keferrn:e (4 knowr) 2. Orioinalor's Reference 3. Agency Reference 4. Re'cr, Se:- 1,
Mem rn 427 9 1 U/C

5. Drginalo-'s Code (if 6. Originator (Coriorae Author) lame and LocatiOn
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

77%JC0 ST ANDREWS ROAD. GREAT MALVERN
WORCESTERSHIRE WR14 3PS

5a. Scoisorin; iAen-:'s 6a. Soonsoring Agency (Contract Authority) kame and Local+on
Code (if known)

7. Title

SIXOGEN1 - A-, OBJECT-ORIENTED LANGUAGE FOP SiNLLATION

7a. Title in Fore:g- Langa;e (ir the case of translations)

7t. Prese'te a, (for comle'ence raers) Title, place and date of conference

E. A.1c I Swrrap . in t a s 9(a' A.-, 2 9(t) Ait ors 3.... 10. Dale P. re4

AFTH __ A 1 1989.03 17

11. Contract kuae 12. Per iod 13. Project 14. Nther Refeence

15. Distribution staieae-t

UNLIM:TE:

Descripors (or keywords)

continue on $emarate Diece of Daoer

Ab~lraci

The Simogen language has been designed specifically to provide a user-friendly
environment for computer modellers. It is a heavily object-oriented language,
but has been designed to be easy to pick up for the most inexperienced of users,
rather than to exploit the full power of the object-oriented paradigm in all
cases. This paper looks at the re sons why it was felt necessary to create a

new language, and considers the reasons behind the particular design chosen. It
also describes the language in outline, and discusses briefly to what extent the
language can be said to be object-oriented. Finally, an outline is given of a

possible iconic interface for the language, to ease it's use still further.-

sac! 068

//
......--- ,i ~jm - , n~T /ll J

THIS PAGE IS LEFT BLANK INTENTIONALLY

